Electrical Engineering (ONLINE)

ECTS Credits 4,0	
Teaching hours	50
Workplace learning hours	50
Total hours of student learning	144

Due versieitee	The second is succeed for Duration and fourier Dealerter Master and DbD students with		
Pre-requisites	The course is opened for Russian and foreign Bachelor, Master and PhD students with		
	specialized background in Electrical Engineering or equivalent skills and knowledge.		
Alignment to	This course contributes to achievement of the graduate outcomes of the following		
graduate profiles	qualifications:		
	Bachelor in Electrical Engineering (Electronic / Mechanical)		
	Graduate Diploma in Electrical Engineering (Electronic / Mechanical)		
	Diploma in Electrical Engineering (Electronic / Mechanical)		
Core transferable	This course contributes towards the development of the following core transferable skills		
skills	categories: Self/Others - Learning to Learn, Specialist skills, Literacy, Numeracy, Digital Literacy.		
Course aim	The School provides the unique opportunity to attend intensive academic program, which is		
	composed of different lectures in nuclear engineering with experience from professors of		
	European countries, with different opinions and approach.		
	The program lectures cover general terms of power systems; basic concept of power system		
	stability, electrical 3-phase system. Fundamental terms of short-circuit currents calculations are		
	introduced. Temporary and surge overvoltages, reactive power compensation means and high		
	voltage cable lines application issues are also considered. Additionally, the course focuses on		
	load flow analysis methods, synchronous machines' excitation systems and automatic voltage		
	regulators principles of operation and root causes of power system blackouts. Special attention		
	will be paid to the topic Grid Integration of Renewable Energies and e-Mobility. Active		
	teamwork in small groups on projects of the course will bring deeper understanding of the		
	subject.		
Indicative	Content may include but is not limited to:		
content	 Digital technologies in the Energy Industry 		
	Renewable Energy Sources. Introduction		
	 The introduction to heat transfer mechanisms and calculation techniques 		
	The basics of analytical calculation methods		
	Guest Speakers Day		
	The basics of a finite-element analysis		
	 Digital technologies in Renewable Engineering 		
	Introduction to MATLAB/Simulink		
	MATLAB/Simulink Support Package for Microcontrollers. Project development		
	Code generation in MATLAB/Simulink		
	External connection of Microcontroller with Simulink		
	 Project implementation in Simulink (Feedback mode) 		

LEARNING OUTCOMES

On s	uccessful completion of this course students will be able to:	
1	Search for information on specified parameters in Russian and foreign databases	
2	Analyze the advanced Russian and foreign experience in solving the assigned tasks	
3	Perform calculations of short circuit currents	
4	Analyze the flow of AC power	
5	Know three-phase electrical circuits	
6	Know modern technologies for transmission of alternating current	
7	Know principles of operation of automatic voltage regulators of synchronous generators	
8	Know principle of operation of transformers	
9	Know basic conditions of short-circuit currents	
10	Know causes of overvoltage in power supply networks	
11	Know causes of major system outages	

ASSESSMENTS

Basis of assessment	Achievement based assessment			
Methods of assessment		Learning Outcomes	Pass criteria (Minimum)	% Weightings
Summative review		1, 4	40%	40%
Portfolio – summative	of practices	2, 3, 5	40%	60%

REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION

Requirements	Mark of 40% or more in every summative assessment
	Gain a course result of C (50%) or higher

RESULTS

Assessment results	Results for assessments are given in percentage marks
Course results	Individual assessments may cover one or more of the learning outcomes.
	 Each summative assessment is assigned a percentage weighting.
	The overall percentage mark for the course is calculated by adding the weighted results
	for all summative assessments.
	To derive the course result the overall percentage mark is converted into a grade using
	Course Result Key AC-NMIT-06

LEARNING AND TEACHING

Learning and teaching approaches	Lectures, group discussions, tutorials, learner managed activities, laboratories, presentations, research, projects and case studies.
Learning and teaching resources	Textbooks, journals and Library Learning Centre resources; use of Internet; computer laboratory and specialist software.
Learner managed activities	 Completion of course work, set assignments/projects Reading of course materials Study group work Preparation for classes Homework Research - (e.g. exploration, location and selection of relevant information, review/ evaluation/analysis of information, recording information) Discussions with colleagues/subject matter experts Review application of information to course work Practicing relevant practical and technical skills/methods/techniques Self-evaluation of course work Gathering relevant contextual information/ issues/ideas to build knowledge of the subject